可解釋性在網(wǎng)絡安全人工智能中有多重要?

人工智能正在改變許多行業(yè),但沒有哪個行業(yè)像網(wǎng)絡安全那樣引人注目。隨著網(wǎng)絡犯罪的激增和技能差距的擴大,越來越明顯的是,人工智能是安全的未來,但仍然存在一些挑戰(zhàn)。最近人們越來越關注的一個問題是對人工智能可解釋性的需求。

隨著人工智能工具的出現(xiàn),人們對人工智能可解釋性的擔憂日益增加,在網(wǎng)絡安全領域,它和其他應用一樣重要嗎?讓我們來仔細看看。

什么是人工智能的可解釋性?

要了解可解釋性如何影響網(wǎng)絡安全,我們必須首先了解為什么它在任何情況下都很重要??山忉屝允窃S多行業(yè)采用人工智能的最大障礙,原因主要有一個,就是信任。

如今,許多人工智能模型都是黑匣子,這意味著我們將無法看到它們如何做出決策。相比之下,可解釋的人工智能(XAI)為模型如何處理和解釋數(shù)據(jù)提供了完全的透明度。當使用XAI模型時,可以看到它的輸出以及導致其得出這些結論的一系列推理,從而建立對此決策的更多信任。

從網(wǎng)絡安全的角度來看,可以考慮一個自動網(wǎng)絡監(jiān)控系統(tǒng)。想象一下,這個模型將登錄嘗試標記為潛在的泄露。一個傳統(tǒng)的黑匣子模型會聲明它認為該活動是可疑的,但可能不會說明原因。XAI允許進一步調查,以查看哪些具體操作使人工智能將事件歸類為違規(guī),從而加快響應時間并潛在地降低成本。

為什么可解釋性對于網(wǎng)絡安全很重要?

在某些用例中,XAI的吸引力是顯而易見的。例如,人力資源部門必須能夠解釋人工智能決策,以確保它們不存在偏見。然而,有些人可能會認為,只要模型準確,模型如何得出安全決策并不重要。以下是為什么情況不一定如此的幾個原因。

1.提高AI準確率

網(wǎng)絡安全人工智能可解釋性的最重要原因是它提高了模型的準確性。人工智能提供了對潛在威脅的快速響應,但安全專業(yè)人員必須能夠相信這些響應是有用的。不明白為什么模型會以某種方式對事件進行分類會阻礙這種信任。

通過降低誤報的風險,XAI提高了安全AI的準確性。安全團隊可以準確地看到為什么一個模型將某些東西標記為威脅。如果是錯誤的,他們可以看到原因,并根據(jù)需要進行調整,以防止類似的錯誤。

研究表明,安全XAI可以實現(xiàn)95%以上的準確率,同時使錯誤分類背后的原因更加明顯。這使我們可以創(chuàng)建更可靠的分類系統(tǒng),確保安全警報盡可能準確。

2.更明智的決策

可解釋性提供了更多洞察力,這對于確定網(wǎng)絡安全的后續(xù)步驟至關重要。解決威脅的最佳方法因多種具體情況因素而異。我們可以了解更多關于人工智能模型,為何以某種方式對威脅進行分類的信息,獲取關鍵的背景信息。

黑盒人工智能除了分類之外可能無法提供更多功能。相比之下,XAI可以讓我們了解其決策過程,揭示威脅的來龍去脈及其表現(xiàn)方式,從而實現(xiàn)根本原因分析。然后可以更有效地解決它。

3.持續(xù)改進

可解釋的人工智能在網(wǎng)絡安全中也很重要,因為它可以實現(xiàn)持續(xù)改進,網(wǎng)絡安全是動態(tài)的。犯罪分子總是在尋找繞過防御的新方法,因此安全趨勢必須做出相應的調整。如果不確定安全人工智能如何檢測威脅,這可能會很困難。

僅僅適應已知的威脅也是不夠的。在過去十年中,大約40%的零日漏洞攻擊發(fā)生在2021年。針對未知漏洞的攻擊變得越來越普遍,因此必須要能夠在黑客之前找到并解決系統(tǒng)中的弱點。

可解釋性可以讓我們準確地做到這一點。因為可以看到XAI如何做出決策,所以可以找到可能導致錯誤的差距或問題,并解決它們以增強安全性。同樣,可以查看導致各種操作的趨勢,以確定應該考慮的新威脅。

4.監(jiān)管合規(guī)性

隨著網(wǎng)絡安全法規(guī)的不斷完善,安全人工智能中可解釋性的重要性也將隨之增長。像GDPR或HIPAA這樣的隱私法都有廣泛的透明度要求。如果企業(yè)屬于這個管轄范圍,黑盒人工智能很快就會成為法律責任。

安全人工智能可能可以訪問用戶數(shù)據(jù)來識別可疑活動。這意味著我們必須能夠證明模型,如何使用該信息來遵守隱私法規(guī)。XAI提供了這種透明度,但黑盒AI卻沒有。目前,此類法規(guī)僅適用于某些行業(yè)和地區(qū),但這種情況可能很快就會改變。

5.建立信任

如果不出意外的話,網(wǎng)絡安全人工智能應該可以用來建立信任。許多企業(yè)難以獲得消費者的信任,許多人懷疑人工智能的可信度。XAI有助于向客戶保證,安全AI是安全和合乎道德的,因為可以準確地確定它是如何做出決策的。

對信任的需求超出了消費者的范圍。安全團隊必須獲得管理層和企業(yè)利益相關者的支持,才能部署人工智能??山忉屝宰屗麄兡軌蛘故舅麄兊娜斯ぶ悄芙鉀Q方案,如何以及為何有效、道德和安全,從而提高獲得批準的機會。

獲得批準有助于更快地部署人工智能項目并增加預算。因此,與沒有可解釋性的情況相比,安全專業(yè)人員可以更大程度地利用這項技術。

XAI在網(wǎng)絡安全方面面臨的挑戰(zhàn)

可解釋性對于網(wǎng)絡安全人工智能至關重要,隨著時間的推移,它只會變得更加重要。然而,構建和部署XAI帶來了一些獨特的挑戰(zhàn)。組織必須認識到這些,以實現(xiàn)有效的XAI部署。

成本是可解釋的人工智能最重要的障礙之一。由于其標記數(shù)據(jù)的要求,監(jiān)督學習在某些情況下可能會很昂貴。這些費用可能會限制,一些企業(yè)證明安全人工智能項目合理性的能力。

同樣,一些機器學習(ML)方法根本無法很好地轉化為對人類有意義的解釋。強化學習是一種新興的機器學習方法,超過22%的采用人工智能的企業(yè)開始使用它。由于強化學習通常會持續(xù)很長一段時間,模型可以自由地做出許多相互關聯(lián)的決策,因此很難收集模型所做的每個決策,并將其轉化為人類可以理解的輸出。

最后,XAI模型的計算強度很大。并不是每個企業(yè)都有必要的硬件來支持這些更復雜的解決方案,并且擴展可能會帶來額外的成本問題。這種復雜性也使得構建和訓練這些模型變得更加困難。

在安全領域有效使用XAI的步驟

安全團隊應謹慎對待XAI,考慮這些挑戰(zhàn)以及網(wǎng)絡安全AI可解釋性的重要性。一種解決方案是使用第二個人工智能模型來解釋第一個模型。ChatGPT等工具可以用人類語言解釋代碼,提供一種方法來告訴用戶模型為何做出某些選擇。

如果安全團隊從一開始就使用比透明模型慢的人工智能工具,那么這種方法會很有幫助。這些替代方案需要更多的資源和開發(fā)時間,但會產(chǎn)生更好的結果。許多企業(yè)現(xiàn)在提供現(xiàn)成的XAI工具來簡化開發(fā)。使用對抗網(wǎng)絡來理解人工智能的訓練過程也有幫助。

無論哪種情況,安全團隊都必須與人工智能專家密切合作,以確保他們了解自己的模型。開發(fā)應該是一個跨部門、更具協(xié)作性的過程,以確保每個需要的人都能理解人工智能決策。企業(yè)必須將人工智能素養(yǎng)培訓作為實現(xiàn)這一轉變的優(yōu)先事項。

網(wǎng)絡安全人工智能必須是可解釋的

可解釋的人工智能提供透明度、更高的準確性以及持續(xù)改進的潛力,所有這些對于網(wǎng)絡安全都至關重要。隨著監(jiān)管壓力和對人工智能的信任變得更加重要,可解釋性將變得更加重要。

XAI可能會增加開發(fā)挑戰(zhàn),但其好處是值得的。安全團隊開始與人工智能專家合作,從頭開始構建可解釋的模型,可以釋放人工智能的全部潛力。

極客網(wǎng)企業(yè)會員

免責聲明:本網(wǎng)站內容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準確性及可靠性,但不保證有關資料的準確性及可靠性,讀者在使用前請進一步核實,并對任何自主決定的行為負責。本網(wǎng)站對有關資料所引致的錯誤、不確或遺漏,概不負任何法律責任。任何單位或個人認為本網(wǎng)站中的網(wǎng)頁或鏈接內容可能涉嫌侵犯其知識產(chǎn)權或存在不實內容時,應及時向本網(wǎng)站提出書面權利通知或不實情況說明,并提供身份證明、權屬證明及詳細侵權或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關文章源頭核實,溝通刪除相關內容或斷開相關鏈接。

2023-08-15
可解釋性在網(wǎng)絡安全人工智能中有多重要?
隨著人工智能工具的出現(xiàn),人們對人工智能可解釋性的擔憂日益增加,在網(wǎng)絡安全領域,它和其他應用一樣重要嗎?讓我們來仔細看看。

長按掃碼 閱讀全文